
1 Water storage and irrigation practices associated with 

2 cannabis production drive seasonal patterns of water 

3 extraction and use in Northern California watersheds

4

5 Short title: Cannabis irrigation practices drive seasonal patterns of 

6 water extraction and use

7

8 Christopher Dillis1*, Connor McIntee1, Ted Grantham2, Van Butsic2, Lance Le1, 
9 Kason Grady1

10

11 1California State Water Resources Control Board, North Coast Region, Santa Rosa, California, United 
12 States of America

13 2University of California Berkeley, Berkeley, California, United States of America

14

15 *Corresponding author

16 Email: christopher.dillis@waterboards.ca.gov

17

18

19

20

21

22

23

24

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/618934doi: bioRxiv preprint first posted online Apr. 25, 2019; 

http://dx.doi.org/10.1101/618934
http://creativecommons.org/licenses/by/4.0/


25 Abstract

26 Concerns have been raised over the impacts of cannabis farms on the environment and 

27 water resources in particular, yet data on cultivation practices and water use patterns and have 

28 been limited. Estimates of water use for cannabis cultivation have previously relied on 

29 extrapolated values of plant water demand, which are unable to account for differences in 

30 cultivation practices, variation across the growing season, or the role of water storage in 

31 altering seasonal extraction patterns. The current study uses data reported by enrollees in 

32 California’s North Coast Regional Water Quality Control Board (Regional Water Board) Cannabis 

33 Program to model how variation in cultivation practices and the use of stored water affect the 

34 timing and amount of water extracted from the environment. We found that the supplemental 

35 use of stored water resulted in a seasonal pattern of water extraction (i.e. water withdrawals 

36 from the environment) that was distinct from water demand (i.e. water applied to plants). 

37 Although water input to storage in the off-season months (November through March) reduced 

38 water extraction in the growing season (April through October), farms generally did not have 

39 sufficient storage to completely forbear from surface water extraction during the growing 

40 season. Beginning in 2019, forbearance will be required during this period for those in the 

41 regulated cannabis industry. The two most important predictors of storage sufficiency (type of 

42 storage infrastructure and seasonality of water source) also had reliable effects on seasonal 

43 extraction patterns, further emphasizing the link between water storage and extraction 

44 profiles. These findings suggest that resource managers and policy makers should consider the 

45 ways in which cultivation practices drive water extraction patterns and how these practices 

46 may be influenced by participation in the regulated cannabis industry.
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47 Introduction

48 Northern California has long been the center of cannabis production in the United 

49 States [1-3]. Cannabis cultivation sites are distributed throughout the region and are generally 

50 located in remote, upper watersheds [4]. When the state voted to permit recreational cannabis 

51 use in 2016, a key argument for legalization was allowing the state to better address 

52 environmental harms caused by cannabis production [5]. In California, Illegal cannabis farms 

53 have been shown to fragment forested landscapes [6], introduce pesticides, fertilizers, and 

54 rodenticides into the environment [5, 7-9], and are often located in sensitive habitats, including 

55 along streams that support endangered salmon species [4]. 

56 There has been particular concern over the impacts of cannabis cultivation on water 

57 resources in areas with seasonally dry conditions [5]. Because many cannabis farms in Northern 

58 California are located in rural landscapes with no access to municipal water supplies, cultivators 

59 generally obtain water directly from the environment, relying on local springs, streams, and 

60 groundwater wells [10]. Stream flow has been identified as an important limiting factor to 

61 salmon, and other sensitive aquatic species in the region, particularly given the seasonal 

62 drought of California’s Mediterranean Climate [11-14]. Because cannabis water demands 

63 coincide with the summer dry season, agricultural water diversions in the North Coast Region 

64 have the potential to reduce stream flows [15-16], increase stream temperatures [17], or even 

65 dewater streams during critical life stages of aquatic species [18-19]. Although these streams 

66 are highly sensitive to variability in flow rates [20-21], there is a dearth of information 

67 surrounding cannabis water use practices, making it difficult to quantify potential 

68 environmental impacts. 
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69 An accurate baseline assessment of water use by cannabis cultivation is particularly 

70 important when considering the spatial and temporal distribution of cannabis water demands. 

71 Although cannabis cultivation has a relatively small geographic footprint, there is a high degree 

72 of spatial clustering among cultivation sites [6] at both local [22] and regional scales [4]. 

73 Currently, there are very few data on the cumulative impacts of many, dispersed water users 

74 [23-24] or flow estimates for small, unnamed streams on which they occur [25]. Impacts from 

75 densely clustered cannabis farms may be exacerbated by temporal clustering of water demand, 

76 with cannabis plants requiring frequent watering in late summer drought months and thus 

77 causing concern for instream flows [5, 18]. A key assumption behind this concern has been that 

78 water demand of cannabis plants directly results in water extraction during this period; 

79 however, there has been no systematic analysis of when water is drawn from the watershed or 

80 the factors that contribute to extraction patterns.

81 To date, estimates of water use by cannabis cultivation have relied on scaling a static 

82 approximation of outdoor cannabis plant demands during the growing season for outdoor 

83 cultivation, June-October [26-27, 18]. Unfortunately, this approach cannot account for changing 

84 water demands over the course of the growing season or under different cultivation conditions. 

85 For instance, a substantial proportion of farms use mixed-light operations (whether in 

86 greenhouses or “hoophouses”) that alter light cycles to produce multiple harvests of smaller 

87 cannabis plants, potentially extending the growing season, yet resulting in much lower water 

88 demand per-plant relative to outdoor cultivation. Another significant shortcoming of plant-

89 based estimates is that they do not account for the practice of using stored water. Although 

90 cannabis farms are known to often utilize water storage, to date, detailed data on capacities 
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91 have been sparse, given limited site access and the difficulty of obtaining these data from aerial 

92 imagery [28-29]. An improved estimation of the water demand of cannabis cultivation would 

93 account for water that is extracted and stored outside of the growing season, as well as how 

94 factors such as water sources shape both when and how much water is extracted and stored. 

95 These seasonal patterns of water extraction hold tremendous importance, given the potential 

96 for overlap between cannabis water demands and low summer water availability. 

97 This study analyzed self-reported data from cannabis farmers that were enrolled for 

98 regulatory coverage under California’s North Coast Regional Water Quality Control Board 

99 Cannabis Waste Discharge Regulatory Program [10]. The reports were filtered to reduce bias 

100 and then analyzed through the development of multiple models that related water use 

101 practices to farm characteristics, including cultivation area, the type of operation (i.e. outdoor 

102 vs. mixed-light), water storage capacity, type of storage, and water source, to address the 

103 following questions:

104 1) Are water extraction rates distinct from those of water use (i.e. based on plant 

105 demand) over the growing season and are these patterns influenced by operation 

106 types?

107 2) Do farms typically have sufficient capacity to maintain a positive water storage 

108 balance for the entirety of the dry season (April through October) and what are the 

109 most important predictors of sufficiency?

110 3) How do the factors that influence water storage in turn affect the timing and amount 

111 of water extraction?

112
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113 Methods

114 Data

115 The data used in this study were collected from cannabis farms enrolled for regulatory 

116 coverage under the North Coast Regional Water Quality Control Board Cannabis Waste 

117 Discharge Regulatory Program (NCRWQCB Cannabis Program). This program was established in 

118 August 2015, with the majority of enrollees entering the program in late 2016 and early 2017. 

119 The data discussed herein were collected from annual reports submitted in 2018 (n=1,702) and 

120 were required to reflect site conditions during the 2017 cultivation year. These data, therefore, 

121 largely represent the first full season of cultivation regulated by the NCRWQCB for the majority 

122 of enrollees in the Cannabis Program. Parcels with cannabis cultivation (including multiple 

123 contiguous parcels under a single ownership) constituted a farm, and reporting was done at this 

124 scale. Although the spatial extent of the NCRWQCB Cannabis Program included all of 

125 California’s North Coast Region, due to constraints placed on cultivation by local and county 

126 ordinances, reports from enrolled farms were limited to Humboldt, Trinity, Mendocino, and 

127 Sonoma Counties (Fig 1). 

128

129 Fig 1. Study Area Map. The North Coast Region of California contains additional counties 

130 besides Humboldt, Trinity, Mendocino, and Sonoma; however, enrollments in the NCRWQCB 

131 Cannabis Program, and thus data included in the current study, were limited to these counties.

132
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133 Given that data were self-reported, we screened reports for quality and excluded those 

134 that were not prepared by professional consultants. Additional criteria for excluding reports 

135 included: reported water applied from storage without any corresponding input to storage, 

136 substantial water input reported from “rain” during summer drought months, and failure to list 

137 a proper water source. Farms were not required to use water meters, and those without 

138 meters often made estimates based the frequency of filling and emptying of small temporary 

139 storage tanks (250 – 2500 gallons; 946 – 9,460 L) used for gravity feed systems and/or nutrient 

140 mixing. We attempted to identify and exclude farms with erroneous reporting by removing 

141 extreme water extraction outliers (more than 1.5 x Interquartile Range) and those with 

142 imprecise monthly estimates (e.g., 20,000, 25,000, and 30,000 L). Farms with total cultivation 

143 area over one acre (43,560 ft2; 4,046 m2) were also excluded, to minimize additional error 

144 inflation resulting from water use estimates at large (and infrequently occurring) scales. Farms 

145 that reported no water use for the entire season or no cultivation area were excluded from the 

146 analysis (reports were required from all enrollees regardless of whether cultivation occurred 

147 during 2017 season). Farms that reported a cultivation area of exactly 10,000 ft2 or 9,999 ft2 

148 (929 or 928 m2, respectively) were determined to reflect regulatory thresholds for local 

149 cultivation ordinances rather than true cultivation area size. Aerial imagery from the National 

150 Agriculture Imagery Program (2016 NAIP) was reviewed to provide an improved estimate of the 

151 size of cultivation area for these farms. The final dataset included 608 reports.

152 The data reported for each farm included the size of cultivation area (cultivation area: 

153 ft2), volume of water applied to plants (water applied: gallons), volume of water input to 

154 storage (water input: gallons), type and volume of water storage infrastructure (storage type: 
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155 pond, other (i.e. tank or water bladder); storage capacity: gallons). Although the data were 

156 reported on the standard measurement system, for the purposes of data analysis and 

157 reporting, these measures were converted to SI units. Water data were reported on a monthly 

158 basis (month), specifying up to three sources of applied water (application source: delivery, 

159 municipal, pond, rain, springs, surface, tanks, water bladder, or well) and water input to storage 

160 (input source: delivery, municipal, rain, springs, surface, or well). An additional parameter 

161 (source type: seasonal, perennial) was created specifying whether farms relied exclusively on 

162 seasonal water sources (e.g. rain, springs, surface) or had at least one perennial source (i.e. 

163 incorporating well, delivery, or municipal water). Although farms may have perennial access to 

164 springs and surface water, these water sources are subject to pending regulatory restrictions, 

165 which will prohibit water diversions from April through October (i.e. “forbearance period”). 

166 However, for the 2017 cultivation year, farms that reported use of these sources during this 

167 period were not subject to regulatory violations or penalties, nor did the use of these sources 

168 make them ineligible for enrollment [10].

169 Cultivation area was reported as the footprint of mixed-light infrastructure and outdoor 

170 gardens, incorporating both canopy area and the space between plants. Aerial imagery (2016 

171 NAIP) was used to distinguish which farms had outdoor gardens, mixed-light infrastructure, or 

172 both, and an additional model parameter was created (operation type: outdoor, mixed-light, 

173 combination). The purpose of identifying operation type was to control for variation in plant 

174 spacing (plants under mixed-light cultivation are smaller and more tightly spaced), ambient 

175 temperature and humidity (mixed-light cultivation occurs underneath a canopy covering), and 
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176 length of cultivation season (mixed-light operations tend to produce multiple harvests, 

177 although on shorter intervals).

178

179 Seasonality of Water Use and Water Extraction

180 Water use and water extraction totals for each month were created using combinations 

181 of reported water applied to plants and water input to storage and these served as response 

182 variables for model fitting. Water use was defined as water applied either from storage or 

183 directly applied from the original source, thus reflecting plant demand. Water extraction was 

184 defined as water either input to storage or directly applied from the original source, thus 

185 reflecting withdrawal from the watershed. 

186 As an additional check of these self-reported data, we sought to compare the reported 

187 rates of water use against the commonly adopted figure of 22 L/plant/day [26-27, 18] for 

188 outdoor plants during the growing season. This was done using aerial imagery data from an 

189 existing study in which the number of mature cannabis plants were counted within a cultivation 

190 area of a known size to determine the size of cultivation area representative of a single, 

191 outdoor, cannabis plant. This number was determined to be 15 m2 of cultivation area, 

192 accounting for both the canopy of the plant and spacing between individuals. The rate of 22 L/ 

193 15 m2/day was converted to 22 L/ 15 m2/month and depicted where appropriate (Figs 2 and 4) 

194 to provide context.

195 Simultaneously estimating the factors influencing water use (and water extraction) 

196 required model fitting to account for zero-inflated, over-dispersed data. Two hurdle models 

197 were fit to produce monthly estimates of the response variables water use and water 
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198 extraction, respectively, using R statistical programming software [30]. Traditionally used for 

199 count data, hurdle models are two-component (binary and continuous) models applied to data 

200 with excessive zero values, with the assumption that zero values arise from a process separate 

201 from the non-zero values [31-32]. In this context we assume that water use is zero only when 

202 cannabis cultivation is not occurring and water extraction is zero only when cannabis cultivation 

203 is not occurring, or when water is being applied only from storage. Non-zero observations are 

204 qualitatively distinct from observations of zero, given that if water use or extraction occurs (i.e. 

205 non-zero), there is a large minimum amount (~3,000 L) instead of observations declining 

206 linearly to zero. The binary component model of the hurdle model (predicting zero vs non-zero) 

207 produces a likelihood of water use (and water extraction), while the continuous component 

208 model produces values for strictly non-zero estimates. The product of the binary and 

209 continuous components’ estimates are the full hurdle model predictions for water use and 

210 water extraction, conditional on the likelihood of an observation being non-zero. Using this 

211 approach, the hurdle model is able to simultaneously account for monthly observations in 

212 which some farms did not use or extract water, while not allowing these observations to 

213 artificially reduce the estimates for farms, overall, during said month.  

214 The first (binary) component (referred to hereafter as binomial model) of the hurdle 

215 models fit a multilevel logistic regression to the binomial response pm,t indicating whether 

216 water use or water extraction were zero. The predictors included scaled (to standard Z-score) 

217 cultivation area (Z), month (m), and operation type (t), and interactions for cultivation area and 

218 month, as well as cultivation area and operation type. The form of this logistic regression is a 
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219 generalized linear model (GLM) with a logit link function and p being drawn from the binomial 

220 distribution:

221 Eq. 1a-c
logit(pm,t) = β0,m,t + Z + β1,m,tZ + ε

β0,m,t = γm,0 + γt,0 
β1,m,t = γm,1 + γt,1

 

222 γm,0 and γt,0 sum up to the intercept β0,m,t for a given month and operation type, respectively. 

223 γm,1 and γt,1 sum up to the slope β1,m,t for a given month and operation type, respectively. Given 

224 twelve months and three operation types, the logistic model contained 36 levels. With the 

225 same predictors as the binomial model, the second (continuous) component model fits a GLM 

226 with a Gamma distributed response variable μ using an inverse link function:

227 Eq. 2 μ ‒ 1 =  β0,m,t + Z + β1,m,tZ + ε 

228 Intercepts and slopes were as described in Eq. 1a-c. The continuous component excluded data 

229 with zero water use or zero water extraction. Hurdle model estimates (W) were calculated as 

230 the product of the two estimated responses for the binomial model and continuous component 

231 model:

232 Eq. 3    W = μ ⋅ 1

1 + ep 
  

233 Because model fitting required the use of a link function to account for non-normally 

234 distributed data, estimated relationships between continuous variables (i.e. cultivation area 

235 and water use, cultivation area and water extraction) were non-linear. For the purposes of 

236 model interpretation, predictions (liters of water use and water extraction) were made for each 

237 level of the categorical variables (month and operation type) at the median value of the 

238 continuous variable, cultivation area (1,098 m2). These results can be interpreted as the 

239 predicted water use or water extraction on the median sized farm. Responses in GLMs at the 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/618934doi: bioRxiv preprint first posted online Apr. 25, 2019; 

http://dx.doi.org/10.1101/618934
http://creativecommons.org/licenses/by/4.0/


240 level of the linear predictors are asymptotically normal, and confidence intervals for model 

241 responses were calculated with the t-distribution and standard errors. Standard errors for 

242 GLMs are the square root of the diagonal elements of the model covariance matrix, estimated 

243 via maximum likelihood estimation. 

244

245 Storage Capacity Sufficiency

246 For each farm, the total amount of reported water use from April through October was 

247 subtracted from the reported storage capacity of the farm to create the response variable 

248 storage balance (i.e. positive values indicate sufficiency while negative values indicate 

249 insufficiency). Extreme outliers of storage balance were identified (6 x Interquartile Range) and 

250 excluded (n=17). To simultaneously estimate the factors influencing storage balance (S), a 

251 multilevel linear model was fit using the predictors: cultivation area (A), operation type (t), 

252 storage type (g), source type (r) and an interaction between cultivation area and operation type:

253 Eq. 4a-b S = β0,t,g,r + A + β1,tA + ε
β0,t,g,r = γt + γg + γr  

254 γt, γg, and γr are components summing to the intercept β0,t,g,r for a given combination of 

255 operation type, storage type, and source type, respectively, resulting in 12 levels total in the 

256 model.

257

258 Water Storage, Sources, and Extraction Patterns

259 An additional hurdle model was fit to determine if predictors of storage balance also 

260 had reliable effects on seasonal patterns of water extraction. The original hurdle model for 
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261 water extraction was supplemented using two additional predictors of storage balance (i.e. 

262 source type and storage type) along with their interactions with month. The intercept defined in 

263 Eq. 1b was thus revised accordingly:

264 Eq. 5 β0,m,t,g,r =  γm + γt + γg + γr + γm,g + γm,r

265 γm,g and γm,r are terms for the interactions of storage type and source type, respectively, with 

266 month. The slope term β1,m,t remained the same. Adding two categorical predictors, with two 

267 categories each, resulted in 144 levels in the hurdle models. AIC comparison was used to 

268 determine if addition of these parameters was justified [33].

269 For the purposes of model interpretation, predictions of water extraction (liters) were 

270 made for each level of the categorical variables (month, operation type, source type, and 

271 storage type) at the median value of the continuous variable, cultivation area (1,098 m2). 

272

273 Results

274 The sample of reported data analyzed included outdoor and mixed-light operations, and 

275 those with combinations of the two cultivation types (Table 1). Average farm size varied 

276 between operation types, with outdoor farms smaller than mixed-light farms and combination 

277 farms larger than both. Average reported annual water use and extraction totals were much 

278 less for outdoor farms, relative to mixed-light and combination farms; however, there was a 

279 notable amount of variation within levels. Average annual water extraction was higher for 

280 farms with seasonal water sources than perennial sources, and for farms with ponds relative to 

281 those without; although average water storage balances for the forbearance period were 

282 greater for these farms with seasonal water sources and ponds.
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283

Table 1. Summary Statistics. 

Sample 
size

Mean
Cultivation Area

(Std Dev)

Mean Annual 
Water Use
(Std Dev)

Mean Annual 
Water Extraction

(Std Dev)

Mean Forbearance 
Storage Balance

(Std Dev)
Operation Type
Outdoor n = 179 1,185 m2

(575)
358,854 L
(303,389) 

371,579 L
(322,659)

-72,655 L
(279,560)

Mixed-light n = 206 1,301 m2

(896)
533,981 L
(458,686)

602,295 L
(508,742)

-38,136 L
(522,637)

Combination n = 130 1,521 m2

(894)
500,513 L
(344,295)

531,692 L
(370,372)

-54,056 L
(428,964)

Source Type
Seasonal n = 237 1,301 m2

(812) - 556,275 L
(456,227)

-62,178 L
(592,885)

Perennial n = 371 1,296 m2

(823) -  449,183 L
(390,923)

-285,354 L
(338,389)

Storage Type
Pond n = 61 1,438 m2

(807) - 831,505 L
(534,016)

+384,613 L
(591,284)

Other n = 477 1,282 m2

(818) - 452,254 L
(387,702)

-253,927 L
(359,426)

Summary statistics for categorical model parameters. Forbearance storage balance is defined as 
the reported amount of water used during the pending forbearance period (Apr-Oct) minus the 
reported storage capacity of the farm.

284

285 Models were first developed for two continuous response variables: monthly water use 

286 and monthly water extraction. Model parameters included cultivation area as a single 

287 continuous predictor variable and two categorical variables: operation type and month. Model 

288 interpretation is reported for both the full hurdle models and the binomial component models. 

289 The binomial models estimate the likelihood for water use or water extraction to occur in a 

290 given month, whereas the full hurdle models estimate the amount of monthly water use or 

291 water extraction, conditional on the likelihood of water use or water extraction occurring for 

292 that month (Table 2).

293
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Table 2. Binomial Component Models: Water Use and Extraction 
(Likelihood).

Month Outdoor
 (95% CI)

Mixed-light 
 (95% CI)

Combination 
 (95% CI)

Water Use  

January 0.25
(0.21, 0.29)

0.39
(0.35, 0.44)

0.39
(0.34, 0.44)

February 0.28
(0.24, 0.33)

0.43
(0.39, 0.48)

0.43
(0.38, 0.48)

March 0.37
(0.32, 0.41)

0.53
(0.48, 0.58)

0.53
(0.47, 0.58)

April 0.62
(0.58, 0.67)

0.76
(0.72, 0.80)

0.76
(0.72, 0.80)

May 0.86
(0.82, 0.89)

0.92
(0.90, 0.94)

0.92
(0.90, 0.94)

June 0.99
(0.97, 1.00)

0.99
(0.99, 1.00)

0.99
(0.99, 1.00)

July 1.00
(0.98, 1.00)

1.00
(0.99, 1.00)

1.00
(0.99, 1.00)

August 1.00
(0.98, 1.00)

1.00
(0.99, 1.00)

1.00
(0.99, 1.00)

September 0.98
(0.96, 0.99)

0.99
(0.98, 0.99)

0.99
(0.98, 0.99)

October 0.91
(0.88, 0.93)

0.95
(0.93, 0.96)

0.95
(0.93, 0.96)

November 0.38
(0.33, 0.42)

0.54
(0.49, 0.58)

0.53
(0.48, 0.59)

December 0.27
(0.23, 0.31)

0.42
(0.37, 0.47)

0.42
(0.36, 0.47)

Water Extraction

January 0.45
(0.41, 0.50)

0.52
(0.48, 0.57)

0.53
(0.48, 0.58)

February 0.48
(0.44, 0.53)

0.56
(0.51, 0.60)

0.56
(0.52, 0.61)

March 0.55
(0.51, 0.60)

0.62
(0.58, 0.66)

0.63
(0.58, 0.68)

April 0.69
(0.64, 0.73)

0.75
(0.71, 0.78)

0.75
(0.71, 0.79)

May 0.77
(0.73, 0.81)

0.82
(0.78, 0.85)

0.82
(0.79, 0.85)

June 0.82
(0.78, 0.85)

0.86
(0.83, 0.88)

0.86
(0.83, 0.89)

July 0.80
(0.76, 0.84)

0.84
(0.81, 0.87)

0.85
(0.82, 0.88)

August 0.80
(0.76, 0.84)

0.84
(0.81, 0.87)

0.85
(0.82, 0.88)

September 0.81
(0.78, 0.85)

0.85
(0.82, 0.88)

0.86
(0.83, 0.89)

October 0.80
(0.76, 0.83)

0.84
(0.81, 0.87)

0.84
(0.81, 0.87)

November 0.50
(0.45, 0.54)

0.57
(0.53, 0.61)

0.57
(0.53, 0.63)

December 0.43
(0.39, 0.48)

0.50
(0.46, 0.55)

0.53
(0.46, 0.56)

Binomial model estimates of likelihood of water use and water 
extraction for median size cultivation area. Confidence intervals in 
parentheses.
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295 The binomial models indicated that the likelihood of water use was greatest (>0.85) in 

296 the growing season (June – October) for all operation types (Table 2) and lowest (< 0.40) in the 

297 winter months (November – March). However, likelihood estimates were reliably higher for 

298 mixed-light and combination cultivation farms than for outdoor farms (November – March), 

299 reflecting water use extending further into these off-season months. Likelihood of water 

300 extraction was reliably higher than water use from November – March, indicating that water 

301 was more likely to be extracted, but not necessarily used, in the offseason. Correspondingly, 

302 although the likelihood of water use was at certainty (1.00) in the peak growing season (July 

303 and August), the likelihood of water extraction in these months was reliably lower (<0.85).

304 Predicted water use volumes from the hurdle models indicated strong seasonal 

305 patterns, peaking in the late growing season (Fig 2; S1 Table). Water extraction volumes were 

306 also greatest in the growing season, but showed less seasonal variation than water use. For 

307 both outdoor and mixed-light cultivation types, water extraction was greater than water use 

308 between November and April, but was less than water use from May to October. Overall, water 

309 use and water extraction totals were higher for mixed-light than for outdoor operation type 

310 farms of the same (median) size, likely resulting from greater density of plants per m2 of 

311 cultivation area. 

312

313 Fig 2. Water Use versus Water Extraction. Predicted monthly water use and water extraction 

314 for outdoor and mixed-light operation types. Model estimates are provided for median farm 

315 size (cultivation area = 1,098 m2). Dashed lines depict 95% confidence intervals for the mean 
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316 estimate. The rate of 22 L / plant (15 m2) / day, which equates to 51,020 L per month for the 

317 median farm size of 1,098 m2 of cultivation area, is plotted to provide contextual comparison.

318

319 Models were next developed for storage balance to address the necessity of water 

320 extraction during the growing season (April – October). Reliable predictors of storage balance 

321 included cultivation area (Estimate = -166.09 L; SE = 49.44), source type (Seasonal Estimate = 

322 114,945 L; SE = 35,246), and storage type (Pond Estimate = 599,763 L; SE = 15,420) (Table 3). 

323 The model predicted storage balance to be insufficient (-278,879 L) for the median size farm 

324 (cultivation area = 1,098 m2) that relied on perennial sources and used tanks or bladders 

325 (“Other”) for storage. Farms of this size relying on seasonal water sources were also predicted 

326 to have a negative storage balance (-163,930 L). Only farms relying on seasonal water sources 

327 that had ponds were predicted to have a positive storage balance (435,833 L) at the median 

328 size of cultivation area. In general, storage balance decreased with increasing size of cultivation 

329 area (Fig 3). Farms without ponds were predicted to have an increasingly negative storage 

330 balance, although farms with ponds were predicted to have sufficient storage balance for sizes 

331 up to nearly one acre of cultivation (3,718 m2). 

332

Table 3. Model estimates for water storage balance (Liters).
Parameter Estimate SE
Intercept -96,611 65,236*

Cultivation Area -167 49*

Operation Type (Mixed-light) -28,770 82,444

Operation Type (Combination) -160,463 92,777

Storage Type Pond 599,763 58,371*

Seasonal Water Source 114,950 35,245*
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OT Mixed-Light*Cultivation Area 28 62

OT Combination*Cultivation Area 131 68*

Estimates for the linear model of water storage balance. Asterisks 
indicate reliable estimates (95% CI does not overlap zero).

333

334 Fig 3. Water Storage Sufficiency. Water storage balance for the cultivation season (April - 

335 October) as predicted by cultivation area, source type, and storage type. Reported water use 

336 for the cultivation season is subtracted from reported storage capacity, with values of zero 

337 indicating storage sufficiency (boundary depicted by red line). Solid lines depict mean 

338 estimates, while dashed lines depict 95% confidence intervals. 

339

340 Given the importance of source type and storage type as predictors of storage balance, 

341 these parameters were used to refine model estimates of water extraction. Both component 

342 models of the hurdle model fit with the additional parameters of source type and storage type 

343 were favored by AIC (Binomial AIC = 7,456; Gamma AIC = 119,974) over the original component 

344 models (Binomial AIC = 8,265; Gamma AIC = 120,352). The binomial model predicted a reliably 

345 higher likelihood of water extraction for farms relying on seasonal water sources in the months 

346 of January, February, and March relative to farms with at least one perennial water source 

347 (Table 4). The pattern was reversed in the summer months of July, August, and September, 

348 with farms extracting from seasonal water sources predicted to have a reliably smaller 

349 likelihood of water extraction than farms with a perennial source type. Similarly, the binomial 

350 model predicted a reliably higher likelihood of water extraction for farms with ponds in the 

351 months of January, February, and March, relative to farms without ponds (i.e. storage type: 

352 other; Table 4). The pattern was reversed in the summer months of July, August, and 
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353 September, with farms using ponds predicted to have a reliably smaller likelihood of extracting 

354 water, relative to farms without ponds. 

355 The volume of water extraction predicted by the full hurdle model followed the pattern 

356 of the binomial model (Fig 4; S2 Table). Water extraction totals were reliably greater for farms 

357 with seasonal water sources in the months of January (0.59), February (0.62), and March (0.65) 

358 relative to farms with at least one perennial water source (0.31, 0.34, and 0.44, respectively; 

359 Table 4). The pattern was reversed in the summer months of June, July, August, and 

360 September, with predicted amount of water extraction from farms with a seasonal source type 

361 lower than farms with a perennial source type. Farms with ponds demonstrated an even more 

362 pronounced divergence from farms using perennial sources. Water extraction totals were 

363 reliably higher for farms with pond storage type in the months of January (0.84), February 

364 (0.82), and March (0.83) relative to other (tanks or water bladders) storage type, regardless of 

365 source type. The pattern was reversed in the summer months of July, August, and September, 

366 with predicted amount of water extraction from farms with ponds lower than from farms 

367 without ponds, regardless of source type. However, this difference was only reliable between 

368 farms with ponds and those without, in which the source type was perennial, as 95% confidence 

369 intervals overlapped when comparing farms with and without ponds, in which source type was 

370 seasonal.

371

Table 4. Binomial Models: Additional Predictors of Water Extraction 
(Likelihood).

Month
Source: Seasonal

Storage: Other
 (95% CI)

Source: Perennial
Storage: Other

(95% CI)

Source: Seasonal
Storage: Pond

(95% CI)

January 0.59
(0.51, 0.66)

0.31
(0.26, 0.36)

0.84
(0.71, 0.91)
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February 0.62
(0.54, 0.69)

0.34
(0.30, 0.40)

0.82
(0.69, 0.90)

March 0.65
(0.57, 0.72)

0.44
(0.38, 0.49)

0.84
(0.72, 0.92)

April 0.72
(0.64, 0.78)

0.63
(0.57, 0.68)

0.83
(0.70, 0.92)

May 0.71
(0.63, 0.78)

0.81
(0.76, 0.85)

0.53
(0.40, 0.66)

June 0.64
(0.56, 0.72)

0.96
(0.93, 0.97)

0.34
(0.23, 0.48)

July 0.60
(0.52, 0.68)

0.95
(0.92, 0.97)

0.36
(0.25, 0.50)

August 0.61
(0.53, 0.68)

0.95
(0.92, 0.97)

0.31
(0.20, 0.44)

September 0.62
(0.54, 0.70)

0.96
(0.93, 0.98)

0.34
(0.23, 0.48)

October 0.65
(0.57, 0.72)

0.89
(0.85, 0.92)

0.53
(0.39, 0.67)

November 0.50
(0.42, 0.57)

0.45
(0.40, 0.51)

0.60
(0.47, 0.72)

December 0.50
(0.42, 0.58)

0.32
(0.27, 0.38)

0.77
(0.63, 0.86)

Water extraction model estimates for median size cultivation area, 
with additional predictors of source type and storage type. 
Confidence intervals in parentheses.

372

373 Fig 4. Additional Predictors of Water Extraction. Monthly water extraction, based on source 

374 type and storage type. Model estimates are provided for median farm size (cultivation area = 

375 1,098 m2). Dashed lines depict 95% confidence intervals for the mean estimate. The rate of 22 L 

376 / plant (15 m2) / day, which equates to 51,020 L per month for the median farm size of 1,098 m2 

377 of cultivation area, is plotted to provide contextual comparison.

378

379 Discussion

380 Cannabis cultivation has been considered an emerging environmental threat to 

381 Northern California watersheds [5]. While there is strong evidence that a large number of farms 

382 are located in sensitive and remote locations [4], until now, there had been little data about 
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383 their actual water demand patterns. Applying newly available data, we modeled the 

384 characteristics of water extraction, storage, and use for over 600 cannabis farms in Northern 

385 California, providing policy relevant information on these patterns. 

386 We found reliable variation between months in terms of both water use and water 

387 extraction. For all operation types, water extraction in offseason months exceeded water use, 

388 reflecting input to storage rather than immediate use for cultivation. This stored water likely 

389 reduced the need to withdraw water in summer months, as water extraction was less than 

390 water use during this period. However, farms did not generally have enough storage to 

391 completely refrain from extracting from April through October. The same useful predictors of 

392 storage sufficiency (type of storage infrastructure and seasonality of water sources) had reliable 

393 effects on extraction patterns, further emphasizing that patterns of input to storage are linked 

394 to storage capacity and whether a farm needs to store water. Farms relying on seasonal water 

395 sources, and especially those with ponds, weighted their annual extraction profile toward 

396 offseason months, whereas farms incorporating perennial sources had extraction profiles that 

397 more closely followed plant demand over the growing season. The results observed herein 

398 demonstrate that estimating the water demands of cannabis cultivation will require accounting 

399 for monthly extraction patterns, in addition to cultivation strategies and farm characteristics 

400 that influence them. Furthermore, given the link between water storage and extraction 

401 patterns, widespread storage insufficiency represents an important topic of discussion in light 

402 of future natural (e.g. drought) and regulatory (e.g. forbearance) restrictions on seasonal water 

403 sources.

404
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405 Storage Insufficiency

406 The results suggest that many farms may need to expand water storage capacity if they 

407 are to eliminate the need for surface water extractions during the growing season. Beginning in 

408 2019, forbearance requirements will be implemented by the California State Water Resources 

409 Control Board that prohibit extraction from surface water (and springs that deliver to surface 

410 water) from April through October. Therefore, although farms included in the current study 

411 were not subject to these restrictions at the time data were collected, farms relying on surface 

412 water (and connected springs) will be required to either develop storage or seek an alternative 

413 water source, such as subsurface water. Furthermore, the data analyzed in the current study 

414 were collected after a particularly wet winter (2016-2017) [34] and many seasonal water 

415 sources reported, herein, may not be available during drought, or even normal years. While 

416 farms may have the options of developing storage for surface water and/or rain catchment, 

417 receiving water from offsite, or extracting subsurface water, previous work has suggested that 

418 drilling wells may be the method of choice to source water in a manner that will provide 

419 insurance against drought and comply with forbearance requirements [10]. The appeal of 

420 drilling a well may reflect difficulties associated with obtaining storage infrastructure, which 

421 could be partially responsible for this decision.

422 Although farms with ponds generally had sufficient water storage to comply with 

423 forbearance requirements, only approximately 10% of farms reported use of a pond for 

424 cannabis irrigation. There are logistical, financial, environmental, and regulatory concerns that 

425 are likely limiting this option for farms. Aside from the costs and engineering constraints for 

426 building ponds on rugged terrain, there may be difficulty in ensuring ponds are not situated on 
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427 seasonal watercourses, thus capturing streamflow and rendering them non-compliant with 

428 state and county regulations. Depending on where they are located, ponds may also serve as 

429 habitat for invasive species, such as bullfrogs, which are also of concern to regulatory agencies. 

430 Although water storage tanks could avoid these concerns, the costs of units themselves and the 

431 availability of appropriate terrain to site numerous large water tanks may pose complications 

432 for farms in rugged terrain. With increasingly larger farms in such areas, the likelihood of 

433 securing enough tanks to meet water needs becomes increasingly smaller. Under these 

434 circumstances, not all farms that rely on seasonal water may be able to meet forbearance 

435 requirements (or outlast drought conditions), due to a lack of water storage. In these cases, 

436 farmers may instead choose to bypass storage requirements by drilling wells, which emphasizes 

437 the need to account for extraction patterns of perennial versus seasonal water sources. 

438

439 Water Sources and Ecological Impacts

440 Based on results observed in the current study, farms using wells would be expected to 

441 follow an extraction pattern that matches plant demand, overlapping with diminishing instream 

442 flow during summer dry months [35]. It is known that extraction of ground water may have a 

443 delayed impact on instream flow on the order of weeks, months, or years, depending on the 

444 depth of extraction, conductivity of the soil, and the recharge received from precipitation [36]. 

445 As a result, understanding lagged effects on instream flow will be useful when assessing the 

446 potential benefits of shifting the instream flow impacts of cannabis water extraction out of the 

447 crucial summer drought months. An accurate assessment of the benefits and risks of well 

448 extraction will require a better understanding of the geology and hydrology in areas where 
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449 cannabis cultivation occurs and on the spatial and temporal dimensions of groundwater-surface 

450 water interactions [37-38]. While there may be benefits of lagged impacts of wells on instream 

451 flow, the possibility of wells instead being directly hydrologically connected to streams may 

452 result in additional concerns for instream flow [39]. 

453 Wells that are shallow and close to surface water have a high likelihood of directly 

454 capturing stream flow [40-41]. As a result, water extraction would have a minimal lag on 

455 instream impacts and the extraction pattern, matching plant demand, would directly overlap 

456 with the most crucial low instream flow period. Further work is needed to determine the 

457 propensity for wells servicing cannabis farms to be located near streams and the degree to 

458 which they are hydrologically connected. For wells that are determined to be capturing surface 

459 water, forbearance requirements will prohibit the use of these sources from April through 

460 October. The ability of these farms to switch to storing water or to drill a new well would then 

461 influence their ability to remain in compliance with regulations. For sites that are currently 

462 outside of the regulated industry, this may be a barrier to becoming permitted. Given the link 

463 between water sources and seasonal extraction patterns demonstrated in the current study, it 

464 will be useful to determine how unpermitted sites (i.e. those operating outside the regulated 

465 industry) may use water in order to develop a holistic understanding of the impact of cannabis 

466 cultivation in general on instream flow.

467 Although the current study demonstrated that summer water extraction is reduced for 

468 farms that use seasonal water sources, unpermitted sites frequently use seasonal sources 

469 opportunistically during the summer growing season [18]. In fact, illegal diversions are a major 

470 issue, given that the majority of cannabis cultivation in the North Coast of California is currently 
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471 unpermitted [42]. In those cases, plant demand (i.e. water use) estimates provided herein may 

472 be more appropriate predictors of water impacts, assuming little to no storage is being used. 

473 However, it is difficult to anticipate what proportion of these farmers incorporate water 

474 storage, either due to necessity or concern for environmental impacts. This simultaneously 

475 emphasizes the importance of these sites entering the regulated industry [43] and illustrates 

476 the limitations of trying to estimate collective impacts of cannabis cultivation without sufficient 

477 data on cultivation practices of unpermitted operations.

478

479 Future Research Needs

480 A lack of understanding of illicit (i.e., unpermitted) cannabis farming practices 

481 represents one of several limitations of this study and a need for additional data. Field 

482 observations from warrant inspections on unpermitted cannabis farms have revealed several 

483 cultivation practices that may affect how water is extracted, stored, and used for cannabis. For 

484 example, perennial springs that would otherwise feed small streams are often dammed by 

485 cannabis cultivators to store water for critical summer months. Alternatively, spring diversions 

486 often feed directly into storage tanks without overflow protections, thereby moving water out 

487 of its regular channel and dispersing it in upland areas. Empirical streamflow studies may be 

488 useful to assess the impact of these practices, comparing expected water extraction totals to 

489 instream flow reductions in a paired watershed design. These efforts would be aided by 

490 improving water extraction estimates themselves, using more detailed data to improve 

491 accuracy.
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492 Data collection incorporating additional parameters that influence water use for 

493 cannabis cultivation would be beneficial to both regulators and farmers. The results of this 

494 study indicate significant differences in predicted water use and extraction amounts as a result 

495 of operation types known to differ in plant sizes, spatial arrangement, and evapotranspiration 

496 potential based on ambient temperature and humidity. However, the precise relationship 

497 between these variables remains unknown. Furthermore, there are certainly additional factors, 

498 such as the soil type, local climate, and cultivar that will influence water consumption [26]. A 

499 better understanding of these factors could potentially inform water conservation best 

500 practices targeted toward specific cultivation strategies and growing conditions, the variety of 

501 which are a hallmark of the cannabis industry in Northern California. Improved estimates that 

502 account for diverse cultivation practices may also help growers to know how their use 

503 compares with the expected range of water use and thus be able to identify and address 

504 operational inefficiencies. 

505

506 Conclusion

507 This study demonstrates that predicting water demands of cannabis farms requires 

508 consideration of the seasonal patterns of water extraction, cultivation practices, water sources, 

509 and storage availability. Pending decisions for farmers aiming to comply with regulations may 

510 influence these seasonal extraction patterns and in turn, inform relative impacts to instream 

511 flow. In general, more data are needed on cultivation practices to help determine additional 

512 factors that influence water demand by cannabis farms. Regulators and researchers may 

513 continue to explore the geographical, climatic, and operation-specific factors that influence 
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514 water demand and more specifically tailor regulations based on these factors. Cannabis farmers 

515 may benefit from an established understanding of what water use expectations are and should 

516 be. All stakeholders will benefit from determinations of environmental impacts, so that 

517 regulatory objectives can be effective, transparent, and achievable [44-45]. 

518
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686 Supporting Information 
687 S1 Figure. Distributions of Summary Statistics. Summary statistics for the continuous model 

688 parameters of cultivation area (predictor) and storage balance (response). Annual water use 

689 and annual water extraction are depicted for descriptive purposes only and are not included as 

690 model predictors or response variables.

691

692 S2 Figure. Monthly Water Data Distributions. Raw monthly water use and water extraction 

693 values. Distributions depict non-zero observations, used in the continuous (gamma) model 

694 component of the hurdle model. The proportion of monthly observations that were non-zeros 

695 is also provided, corresponding to binary input to the binomial model component of the hurdle 

696 model.
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S1 Table. Full Hurdle Model Estimates (Liters).

Month Outdoor
 (95% CI)

Mixed-light 
 (95% CI)

Combination
 (95% CI)

Water Use  
January 3964

(2984, 5320)
6720

(5180, 8827)
6664

(5061, 8857)

February 4193
(3207, 5529)

6897
(5407, 8887)

6843
(5290, 8917)

March 6278
(4950, 8000)

9857
(7965, 12288)

9746
(7780, 12261)

April 14926
(12573, 17705)

20729
(17792, 24235)

20284
(17302, 23815)

May 31419
(27656, 35622)

41482
(36788, 6957)

39882
(35221, 45328)

June 48163
(43557, 53090)

64492
(57992, 72061)

60895
(54388, 68615)

July 56529
(50950, 62368)

79827
(71485, 89513)

74403
(65954, 84505)

August 60890
(54845, 67400)

88827
(79399, 99965)

82161
(72532, 93934)

September 54050
(48590, 60022)

76064
(68021, 85574)

71090
(62988, 80903)

October 33900
(30139, 38048)

43854
(39125, 49361)

42107
(37428, 47578)

November 7404
(5859, 9395)

11738
(9504, 14602)

11571
(9258, 14523)

December 4369
(3325, 5794)

7305
(5693, 9476)

7239
95561, 9498)

Water Extraction

January 20092
(16302, 24861)

34932
(27787, 44527)

31408
(25028, 39786)

February 20314
(16622, 24908)

34010
(27366, 42778)

30850
(24860, 38587)

March 22727
(18892, 27399)

37038
(30346, 45657)

33501
(27495, 41083)

April 23882
(20410, 27963)

35070
(29649, 41771)

32215
(27320, 38159)

May 27660
(23999, 31881)

40341
(34560, 47397)

36611
(31495, 42755)

June 36022
(31494, 41204)

56753
(48657, 66744)

49482
(42612, 7840)

July 39602
(34473, 45513)

66701
(56779, 79112)

56693
(48424, 66911)

August 42264
(36735, 48660)

74263
(62977, 88517)

61973
(52726, 73514)

September 38898
(33941, 44596)

64136
(54737, 75862)

54901
(47041, 64578)

October 28833
(25143, 33064)

41876
(35976, 49080)

37881
(32691, 44121)

November 14877
(12204, 18194)

21815
(17699, 27162)

20787
(16885, 25755)

December 16404
(13240, 20413)

26623
(21133, 33988)

24716
(19656, 31349)

Water use and extraction model estimates for median size cultivation 
area, by operation type. Confidence intervals in parentheses.
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712
S2 Table. Full Hurdle Model Estimates for Additional Predictors 
(Liters). 

Month
Source: Perennial

Storage: Other
 (95% CI)

Source: Seasonal
Storage: Other

 (95% CI)

Source: Seasonal
Storage: Pond

 (95% CI)

January 9991
(7386, 13640)

24482
(18514, 32237)

66754
(47181, 91822)

February 10158
(7628, 13630)

26205
(20010, 34149)

62758
(43894, 87217)

March 11896
(9226, 15410)

30162
(23227, 38946)

62561
(44305, 85627)

April 18956
(15565, 23061)

29052
(22858, 36603)

39124
(27504, 53266)

May 28877
(24634, 33778)

27256
(21542, 34154)

22268
(13672, 35255)

June 43182
(38113, 48807)

28963
(22447, 37013)

17684
(9649, 31735)

July 50087
(43948, 56981)

29316
(22418, 38029)

18167
(9971, 32552)

August 54027
(47448, 61430)

31459
(24057, 40821)

16770
(8851, 31444)

September 49173
(43291, 55747)

29136
(22355, 37667)

16331
(8804, 29828)

October 32524
(28173, 37455)

23488
(18112, 30224)

23193
(14003, 37241)

November 11730
(9154, 15092)

14812
(10840, 20250)

30554
(18948, 48788)

December 9431
(7035, 12745)

17312
(12715, 23548)

52948
(35952, 76012)

Water extraction model estimates for median size cultivation area, 
with additional predictors of source type and storage type. 
Confidence intervals in parentheses.
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